
Using the Island Model Genetic Algorithm to

Optimise a Draughts Board Evaluation Function

by

Brian M. Foley

A Thesis submitted to

the University of Dublin
for the degree of

Master in Science

Department of Mathematics
University of Dublin

Trinity College

29 August, 2003

Declaration

This thesis has not been submitted as an exercise for a degree at any other University.

Except where otherwise stated, the work described herein has been carried out by the

author alone. This thesis may be borrowed or copied upon request with the permission

of the Librarian, University of Dublin, Trinity College. The copyright belongs jointly to

the University of Dublin and Brian M. Foley.

Signature of Author ..

Brian M. Foley

29 August, 2003

Acknowledgements

I would like to thank my supervisor Dermot Frost, for giving me the freedom to work

independently but still being available to give me advice and ideas when I needed help.

I would also like to thank Richard Morrin and Sean Healy for sharing many tips and

tricks, without which my time in HPC would have been a lot harder.

Abstract

Draughts is a two-person, deterministic, zero-sum, perfect information game. This re-

port shows how an Artificial Intelligence program was constructed using a look-ahead

tree with minimax search and alpha beta pruning. Furthermore, we show how the board

evaluation function for the look-ahead tree can be optimised by using a distributed ge-

netic algorithm. Significant time was spent optimising the look-ahead procedure to

enable the genetic algorithm to run in a relatively short period of time. A serial version

of the code was also constructed to allow interactive play against the computer, where

the computer could be fed the results of the genetic algorithm’s optimisation.

Contents

Table of Contents ii

List of Figures iv

1 Introduction 1

2 Theory 3

2.1 Search Trees . 3

2.2 Minimax Search Strategy . 4

2.3 Alpha Beta Pruning . 5

2.4 Evaluation Function . 6

2.5 Iterative Deepening . 8

2.6 Search Extension . 8

2.7 Genetic Algorithm . 8

2.8 Island Model . 10

3 Algorithms and Code Design 12

3.1 Structures . 12

3.2 Special optimisations . 14

3.2.1 Calculating Possible Moves . 14

3.2.2 Profiling code . 16

3.3 Parallelisation . 19

4 Testing & Performance 20

i

CONTENTS ii

4.1 Draughts Engine . 20

4.2 Efficiency . 21

4.3 Branching Factor . 22

4.4 Effect of Search Depth . 24

5 Results 25

5.1 Evaluation Function Parameters . 25

5.2 Genotypic Similarity . 28

5.3 Playability of Game . 30

6 Conclusion 31

References 32

A Official Rules of Draughts A-1

List of Figures

1.1 Draughts Board . 1

2.1 Tic-tac-toe Search Tree . 4

2.2 Minimax Search Tree . 5

2.3 Alpha Beta Pruning . 6

2.4 The Island Model Genetic Algorithm . 10

3.1 Conventional numbering scheme for a draughts board. 13

3.2 Structure used to represent the tree of nodes. 13

3.3 Visual representation of the possible moves up the board 14

3.4 Explanation of the procedure used to calculate possible moves 16

3.5 Bit-counting using loops . 18

3.6 Bit-counting using a lookup table . 18

4.1 Screenshot of Board . 20

4.2 Benchmark of the bit-counting algorithms 21

4.3 Minimax versus alpha beta pruning . 22

4.4 Branching Factor for Draughts . 23

4.5 Comparison of number of nodes in different depth of lookup trees 24

5.1 Evaluation Function Coefficients for Stage 1. 25

5.2 Evaluation Function Coefficients for Stage 2 26

5.3 Evaluation Function Coefficients for Stage 3. 26

5.4 Evaluation Function Coefficients for Stage 4 27

5.5 Evolution of Genotypic Similarity . 28

iii

LIST OF FIGURES iv

5.6 Improvement of Genotypic Similarity across multiple processors 29

Chapter 1

Introduction

For the purposes of this project, draughts will be defined as the conventional 8×8 game

of draughts as set out in the Official Rules of Draughts[5]. The playing board is shown

in Figure 1.1. If you are familiar with draughts, the only rule of note that is different

to “common” draughts is that jumps are forced (i.e. there is no “huffing”).

Figure 1.1: Draughts is played on an 8×8 grid.

Draughts is a two-person, deterministic, zero-sum, perfect information game. These

terms are defined as:

Two-person: there are two opposing players playing the game.

Deterministic: there is no inherent chance associated with the outcome of the game,

i.e. the outcome of each move, or transition from one state in the game to another,

is known beforehand.

1

CHAPTER 1. INTRODUCTION 2

Zero-sum: what is good for one person is bad for the other person.

Perfect information: all information is available to both players at all times.

Games of this type are best solved using a look-ahead search tree to search for the

best possible move. The look-ahead uses a board evaluation function to evaluate the

relative benefit of each board position in the tree. The board evaluation function needs

to be tuned to provide the best possible performance. In this case the board evaluation

function was optimised by a genetic algorithm.

We will follow the lead of Samuel[1] and Schaeffer[2] in the design of the draughts

program, and will reference the work of Chisholm[4] in the optimisation of the evaluation

function. The main emphasis of this project is to develop the Artificial Intelligence

aspects of the program, hence we avoid using opening or closing books, even though

Chinook’s opening books are publicly available[8]. Opening books, closing books, anti-

books etc. are all ways of improving the performance of the draughts program by pre-

calculating numerous board positions and storing them in a database. This was thought

to detract from the main aim of improving the evaluation function as the books are

conventionally used to replace the evaluation function in the opening and closing stages

of play.

Chapter 2

Theory

2.1 Search Trees

The basic concept of search trees is to build a tree of all possible configurations that

could result from the current board configuration. You can then assign a weight to

each of those possible configurations and choose a route that will lead you to the most

beneficial configuration.

A simple example is to introduce the game of tic-tac-toe (also called naughts and

crosses). A partial search tree is shown in Figure 2.1. The number of possible board

configurations is so small that you could search the entire tree. There is an upper limit

of 9! (362880) for tic-tac-toe, but in reality that could be greatly reduced by taking

symmetry and finishing positions into account. This search procedure is simply scaled-

up to accommodate the greater complexity of draughts. The average branching factor

in draughts is about 5, as shown in Figure 4.4, while searches routinely construct trees

with about 100,000 terminating nodes, as shown in Figure 4.5.

3

CHAPTER 2. THEORY 4

Figure 2.1: An example search tree for the game of tic-tac-toe. The first three levels are
shown completely, while the next three levels are only partially shown to save space.
Symmetrically identical solutions within the same branch are ignored.

2.2 Minimax Search Strategy

The minimax search strategy is used when the evaluation function is symmetric. For

example, a good position for player A may be assigned a score of +100, while a good

position for player B may be assigned a score of −100. For this project the evaluation

function was carefully constructed to be symmetric, although it should be noted that

the evaluation function does not have to be symmetric about zero. Therefore player

A would always try to force the game down a path that has a positive score, whereas

player B would try to force the game down a path that had a negative score.

In a two player game, player A and player B will take alternative turns, each trying

to maximise and then minimise the path that the game takes. This is the origin of

CHAPTER 2. THEORY 5

4

MAX

MIN

MAX

MIN

MAX

2 4 6 −10 0 6 −5 1 −5−4−77−2−18−8

−8 4 −2 6 −7 −10 −5 −5

4 6 −7 −5

4 −7

Figure 2.2: A simple minimax scheme for an imaginary game. Possible scores range
between −10 and 10. The path that will be followed is shown in bold.

the term Minimax. A brief example is shown in Figure 2.2. Note that only the end-

nodes of the tree are evaluated with the evaluation function, and then those numbers

are propagated up the tree, according to whether it is on a Max node or a Min node.

2.3 Alpha Beta Pruning

Figure 2.3 shows a modified version of Figure 2.2. Alpha Beta pruning can be sum-

marised by saying:

If you know a particular route is bad, do not waste time finding out how

utterly terrible it could be.

Figure 2.3 assumes that you are always evaluating from left to right. Note that once

you know that a particular branch is useless for your purposes, you may discard the rest

of the branch.

In Figure 2.3, node 12 has been evaluated to −10, this means that without evaluating

node 13 we know that node 7 is at least ≤ −10 (i.e. the minimum of −10 and some

unknown quantity is ≤ −10). Thus to maximise node 4, we have a choice between −7

CHAPTER 2. THEORY 6

MAX

4 6

−8 4 −2 6

2−8 4 8 −2−1 67 −4−7
1110 �����

�����
�����
�����

−10 0
1312 ���

���
���
��� ���

���
���
���

6 −5
1514 �����

�����
�����
����� 	�	�	

	�	�	

�
�

�
�

1 −5
16 17

�����
�����
�����
�����
�����
�����

�
�

�
�

�
�

���
���
���

−5 −5
8 9

−7 −10
6 7

<−10

�����
�����
�����
�����

−7 −5
4 5

4 −7
2 3

<−7

4
1

MAX

MIN

MAX

MIN

Figure 2.3: An example of alpha beta pruning of a search tree. Note that 5 out of 16 end
points do not have to be evaluated, representing a saving of about 31% in calculation
time.

and ≤ −10, which is always going to evaluate to −7 no matter what node 13 happens

to be, so there is no need to evaluate node 13 at all.

Similarly, it is possible to eliminate all nodes below node 5. Node 3 is a minimising

node, therefore it is ≤ −7 because one of its children is −7; this means that the max-

imising node 1 has a choice between 4 and ≤ −7. The answer to this is always going to

be 4, no matter what the nodes under node 5 evaluate to.

2.4 Evaluation Function

The evaluation function for a terminal node is a linear combination of a series of tests.

It takes the form:

f = a1x1 + a2x2 + a3x3 + . . . + a
n
x

n
(2.1)

In this case x
n

are constructed from general knowledge about the game of draughts

(as described by Samuel[1] and Schaeffer[2]) and a
n

are what we need to tune to get a

“good” evaluation function.

CHAPTER 2. THEORY 7

The individual x
n

are described here:

Piece Advantage (PA): measures the numerical advantage of your pieces over your

opponents. Kings and Men are weighted with a factor of 3 and 2 respectively.

Advancement (ADV): men are given greater weightings as they advance towards the

king row.

Balance (BAL): board configurations that have a good left-right balance of the pieces

are favoured.

Back Row (BR): keeping men on the back row is rewarded, so that the opponent

cannot promote any men to kings.

Man Centrality (MC): having men in the center of the board is good. The center of

the board is defined as squares 10, 11, 14, 15, 18, 19, 22, 23 in Figure 3.1.

King Centrality (KC): having kings in the center of the board is good.

Total Mobility (TM): this is a measure of the total number of moves that are possible

from the current position.

King Trap (KT): if a king is trapped in a corner, that is bad.

Free King (FK): if a king has four adjacent empty squares, that is good.

There are actually 36 terms in Equation 2.1. The nine terms enumerated above are

grouped together and apply to four distinct stages of play. There need to be different

stages of play, due to the changing strategies that are necessary as the board evolves.

For example, the strategy one would adopt when there are two black kings and one

white king on the board is drastically different from the strategy one would adopt in the

initial moves of a game. These stages of play are determined by the number of pieces

remaining on the board and are described by the following rules:

CHAPTER 2. THEORY 8

Stage Number of pieces remaining
1 20 - 24
2 14 - 19
3 10 - 13
4 0 - 9

2.5 Iterative Deepening

Often, there is a time limit per-move in draughts competitions, thus a method for

limiting the time that a calculation takes is essential. Iterative deepening is a method

whereby the tree is evaluated to depth 2, then depth 3, then depth 4 etc. Due to results

presented in Figure 4.5 we neglect the time to calculate to depth n-1 when we are in

the process of calculating depth n. This simplifies the coding of the Iterative Deepening

procedure; we simply construct successively larger and larger trees, noting the result of

each tree. When the time limit is reached, the most recent result is used.

2.6 Search Extension

Search extensions (also called “The Method of Hot Pursuit”) are used to minimise

the horizon effect. A horizon effect can be caused when a large change in the board

configuration occurs one move after the depth to which we have searched. A move where

one piece jumps an opponent will result in a large change in the board score. To avoid

not seeing such moves when we search to a fixed depth, n, we will only terminate the

search when we have reached a depth of n and there are no possible jumps on the board.

It is quite common for search extensions to extend a particular branch of the tree by

two or more levels as the game progresses in a “tit-for-tat” manner. The result of this

procedure should be a tree whose nodes are all relatively stable.

2.7 Genetic Algorithm

The aim of this project was to try to evolve a set of weights for the polynomial in

Equation 2.1 with the weights themselves forming the genetic material processed by the

CHAPTER 2. THEORY 9

genetic algorithm. The fitness function used in this genetic algorithm was the number of

wins achieved by each player in a round-robin tournament. The basic genetic algorithm

is shown in the following pseudo-code:

• Randomly Select Initial Populations

• For Each Generation:

– Conduct Round-Robin Tournament

– Set fitness of individual to number of games won

– Sort by fitness

– Perform crossover

– Perform mutation

– Migrate Individuals (if applicable)

– Report statistics

• MPI Gather() the fittest individuals to one node

• Final Round-Robin tournament to decide the “fittest of the fittest”

All random events were controlled by functions from the GSL libraries. In particu-

lar, the selection of individuals for crossover was controlled by the “Roulette Wheel”

algorithm. This algorithm means that it is likely that a relatively fit individual will be

selected to form offspring for the next generation, but there is a small probability that

an unfit individual will be selected instead. This method is used to prevent convergence

to local minima and to give “unusual” genetic material a chance (however small) to

propagate. The algorithm is as follows:

• assign individuals intervals on the interval [0, 1) whose length is proportional to

their fitness

• generate a random number in [0, 1)

• choose the individual whose interval contains that random number

CHAPTER 2. THEORY 10

2.8 Island Model

The island model genetic algorithm is different from the standard parallel genetic algo-

rithm. In parallel genetic algorithms, there is a single large population spread across

many processors, while in the island model each processor is given a subpopulation of

individuals. The processors evolve their populations using a serial genetic algorithm.

Periodically a processor may migrate a number of its individuals to another popula-

tion. The amount of communication involved in the island model is very small. One

of its main advantages for draughts is that it helps to avoid premature convergence to

a particular local maximum. Each processor begins to equilibrate to some stable solu-

tion between migration events and is then infused with new genetic material, which will

either move the population to a new maximum, or have no long-term effect.

C

Random
Migration

A

D

B

F

E

C

Figure 2.4: This shows the inspiration for the island model genetic algorithm. Shown are
several islands with distinct subpopulations. These subpopulations evolve separately,
but are subject to random migrations of individuals between islands.

As with the basic concepts of genetic algorithms, the island model is designed to

mimic nature. With reference to Figure 2.4, you can compare the island model to a

number of isolated islands in an ocean. Each island has its own unique habitat, and the

life on that island evolves relative to the particular constraints that the habitat imposes.

CHAPTER 2. THEORY 11

This is analogous to the subpopulations evolving independently on different processors.

Furthermore, every once in a while, sea or air currents may carry animals or plants

between islands in our hypothetical ocean. This is analogous to the migrations that

occur in the island model and just as occurs in nature, the newly arrived specimen may

either die out quickly, achieve total dominance on the island or live peacefully with the

original population.

Chapter 3

Algorithms and Code Design

3.1 Structures

Each individual board position is represented by the following structure:

typedef struct s_board{

unsigned int bm;

unsigned int bk;

unsigned int rm;

unsigned int rk;

} t_board;

Each unsigned integer represents the board positions of the black men, black kings, red

men and red kings respectively. There are 32 bits in each unsigned integer, which is

exactly the number of playable squares on the draughts board (see Figure 3.1). A bit set

to zero represents an empty square, while a bit set to one represents a square occupied

by that type of piece.

This type of structure does limit the portability of the code somewhat, but since both

the computational cluster (iitac.maths.tcd.ie) and the development environment

(maths.tcd.ie) were composed of 32 bit machines which had no problems with this

type of code, this restricted portability was accepted as a solution.

Each node on the board tree takes the form:

12

CHAPTER 3. ALGORITHMS AND CODE DESIGN 13

32

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31

Figure 3.1: Conventional numbering scheme for a draughts board.

typedef struct s_node{

struct s_node *left;

struct s_node *right;

struct s_node *next;

struct s_board board;

} t_node;

Thus, the tree structure is built up of nodes as shown in Figure 3.2 for programming

convenience, rather than the more common tree structure shown in Figure 2.2. With the

depth of tree searches required for an adequate draughts playing program, the number of

nodes per tree grows very large. To prevent this from filling the memory of the machine,

each branch of the tree is free()’ed as soon as it has been evaluated.

Figure 3.2: Structure used to represent the tree of nodes.

CHAPTER 3. ALGORITHMS AND CODE DESIGN 14

3.2 Special optimisations

3.2.1 Calculating Possible Moves

To increase the speed of the program, most operations are bitwise. This allows the

calculation of possible moves to be “in parallel”. There are only three possible ways

for pieces to move if they are travelling in the up direction, they can move 3, 4 or 5

places up depending on the square that they started on. See Figure 3.3 for a graphical

representation of this.

b)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

a)

c) d)

Figure 3.3: Explanation of the “up3”, “up4” and “up5” moves. Figure a) is a reminder
of the numbering scheme shown in Figure 3.1. Figure b) shows how pieces may move
up four places on the numbering scheme. Figures c) and d) show how pieces may move
up 5 and 3 places, respectively.

With reference to Figure 3.3, you can see that squares 5 to 32 can all move to a

square that is numerically 4 less than itself. We can calculate which of those squares

CHAPTER 3. ALGORITHMS AND CODE DESIGN 15

have pieces and can move in that direction with a simple algorithm. First we define

a mask called up4 to mask the squares 5 to 32. We also create empty and upward to

represent the squares that are empty and the squares that contain pieces that are legally

allowed to move upwards. A graphical representation of this is shown in Figure 3.4.

unsigned int up4 = 0xfffffff0;

empty = ~ (board.rm | board.rk | board.bm | board.bk);

Then we apply the up4 mask to upward, shift that integer four places downwards (so

that the pieces are now over the destination squares), and and that with empty to check

if the destination squares are empty. Any bit that is non-zero in the resulting integer

represents a valid move.

valid_moves = empty & ((up4 & upward) >> 4);

A similar approach can be taken to calculate possible moves in the down direction,

and to calculate jumps. Double and triple jumps etc. are accommodated with a recursive

call to a similar routine.

CHAPTER 3. ALGORITHMS AND CODE DESIGN 16

f)

������������ ������������������������������������
	�		�	
�

�
 ������������
�

�
������ ������������

������������ ������������ ���
���������

������������ ��������������������
������������ ������������ ������ � �

!�!�!!�!�!"�"�""�"�"

#�#�##�#�#$�$�$$�$�$%�%%�%&�&&�&'�''�'(�((�(
)�)�))�)�)*�*�**�*�* +�++�+,�,,�, -�-�-

-�-�-
.�.�..�.�./�//�/0�00�0

1�11�12�22�2

3�33�34�44�4 5�55�56�66�6 7�77�78�88�8
9�99�9:�::�: ;�;;�;<�<<�< =�==�=>�>>�> ?�??�?@�@@�@

A�AA�AB�BB�B C�CC�CD�DD�D E�EE�EF�FF�F

G�GG�GH�HH�H
I�II�IJ�JJ�J

a) b) c)

d) e)

Figure 3.4: This is the procedure used to calculate possible moves for the “up4” case.
We begin with the board configuration a), where it is the turn of the red crosses to
make a move. Figure b) highlights all the empty squares on the board. Figure c) shows
all pieces that are legally allowed to move upwards. Figure d) shows those squares
shown in figure c) shifted downwards four places according to the numbering scheme
in Figure 3.1, this represents the locations to which the pieces in c) could move for the
“up4” case if each piece was alone on the board. Figure e) shows the logical and of
figures b) and d), which represents the actual destinations that are possible (reversing
the assumption that each piece is alone on the board from figure d)). Finally figure f)
shows the final product; there are five possible moves available to the red crosses in the
“up4” direction. To get the full complement of moves available, the above procedure
will be followed for “up3” and “up5” and the results combined.

3.2.2 Profiling code

The performance of the code was a cause for some concern. For example, consider a ge-

netic algorithm with 100 generations, each generation contains 32 x 31 games (if the pop-

ulation size is 32), each game contains about 80 moves, each move involves a tree search

of about 100,000 nodes, each node must be evaluated by the static evaluator(). This

gives 8× 1011 calls to static evaluator(), which in turn is based on count pieces(),

a function to count the number of bits in unsigned integers. It was found that this

counting of bits was the main slowdown, and two algorithms were considered to try to

CHAPTER 3. ALGORITHMS AND CODE DESIGN 17

seconds ms/call
% time cumul. self calls self total name

33.8 0.93 0.93 17087802 0.00 0.00 count pieces()

12.1 1.26 0.33 301814 0.00 0.00 static evaluator()

10.1 1.54 0.28 812566 0.00 0.00 count moves()

9.8 1.80 0.27 259006 0.00 0.00 calc jumps()

8.7 2.04 0.24 1693 0.14 1.61 minimax ab()

6.6 2.22 0.18 432475 0.00 0.00 count jumps()

5.1 2.36 0.14 900754 0.00 0.00 swap pieces()

5.0 2.50 0.14 865656 0.00 0.00 make kings()

4.2 2.61 0.12 100359 0.00 0.00 calc moves()

1.4 2.65 0.04 223332 0.00 0.00 delete piece()

1.3 2.69 0.04 560270 0.00 0.00 deep enough()

1.1 2.72 0.03 259006 0.00 0.00 calc all()

0.7 2.74 0.02 158131 0.00 0.00 free restof branch()

0.1 2.74 0.00 24 0.12 114.18 draughts()

0.0 2.74 0.00 1714 0.00 1.60 computer move()

0.0 2.74 0.00 1714 0.00 0.00 count all()

0.0 2.74 0.00 1693 0.00 0.00 second()

0.0 2.74 0.00 1 0.00 0.00 ParseCommand()

0.0 2.74 0.00 1 0.00 2740.23 genetic algorithm()

Table 3.1: This is a profile generated by the command gprof for a single game
of draughts. Note that the majority of execution time is spent in the function
count pieces(). Two methods of optimising this function are shown in Figure 3.5
and Figure 3.6.

increase speed.

The two approaches to bit-counting are shown in Figure 3.5 and Figure 3.6. The

first method works by and’ing an integer with that integer minus one, this will set the

least significant 1 bit to 0. Therefore, counting the number of bits is a simple matter

of looping over this code until the integer is zero, while incrementing a counter. The

second method works by splitting the 32 bit integer into four sets of eight bits. There

are only 256 different bit configurations for eight bits, the results of which are stored in

a table in the code.

CHAPTER 3. ALGORITHMS AND CODE DESIGN 18

int count pieces(unsigned int piece){
unsigned int count = 0;

while(piece != 0){
5 piece &= piece−1;

count++;
}

return(count);
10 }

Figure 3.5: Bit-counting using loops

int count pieces(unsigned int piece){
static char table[256] = {

0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,

5 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,

10 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,

15 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 };

unsigned int count = 0;
20

count = table[piece & 0xFF];
piece >>= 8;
count += table[piece & 0xFF];
piece >>= 8;

25 count += table[piece & 0xFF];
piece >>= 8;
count += table[piece & 0xFF];

return(count);
30 }

Figure 3.6: Bit-counting using a lookup table

CHAPTER 3. ALGORITHMS AND CODE DESIGN 19

3.3 Parallelisation

The method of parallelisation used was the Island Model as explained in section 2.8.

This method of parallelisation is not communication intensive as migration will only

occur after several generations have evolved. It is important to use non-blocking sends,

so that the processors can continue somewhat independently. Consider several round-

robin tournaments, each on a different island. It is clear that with individuals of different

fitness, the time taken to play games could vary quite a lot. For this reason, each island

could arrive at the “migration time” at different physical times. With non-blocking

sends, the amount of time spent waiting for your neighbours to catch up is minimised.

The migration occurs in a cyclical fashion, with processor 1 sending to processor

2, 2 sending to 3 etc. The selection of which individual to migrate was based on the

“Roulette Wheel Algorithm” as discussed in section 2.7.

Chapter 4

Testing & Performance

4.1 Draughts Engine

Figure 4.1: This is the output of the computer vs. human mode of the program. The
actual board of play is in the top lefthand corner. A board showing the square numbering
is shown in the top righthand corner for convenience. At the bottom of the screen all
possible moves by the black player are shown, as it is blacks turn to move.

One of the most difficult aspects of this project was testing the validity of the

draughts engine. That is, it was imperative that the rules of draughts had been pro-

grammed correctly. To test this, the game was played in two-player mode, where the

developer could control the moves of both players. Several games were played, at each

20

CHAPTER 4. TESTING & PERFORMANCE 21

step the board was carefully analysed to check that the suggested moves (as shown in

Figure 4.1) were consistent with the board position and the rules of draughts. Luckily

the rules of draughts are quite straight-forward, so once a logical method was adopted

and some coding issues were overcome, the draughts engine could successfully operate.

4.2 Efficiency

0

0.01

0.02

0.03

0.04

0.05

0.06

0 100000 200000 300000 400000 500000

T
im

e
ta

ke
n

(s
ec

)

Number of integers

count_pieces_one
count_pieces_two

Figure 4.2: Benchmark of the bit-counting algorithms. Note that the number of opera-
tions in the first method is dependent on the number of bits in the number, thus there
is some variation in the timing. The second method is completely linear, however, with
the number of operations staying the same no matter what number is tested.

The efficency of the code was improved in two ways. The first way was to improve

the most commonly used function, count pieces(). The theory behind this function is

discussed in subsection 3.2.2 and the results are shown in Figure 4.2. Note that the time

required to count the bits in a series of numbers is reduced almost in half by adopting

the second, more efficient algorithm.

CHAPTER 4. TESTING & PERFORMANCE 22

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90
0

20000

40000

60000

80000

100000

120000

140000

160000

T
im

e

N
um

be
r

of
 n

od
es

Move Number

Minimax Time
Minimax Nodes

Minimax Alpha Beta Time
Minimax Alpha Beta Nodes

Figure 4.3: The increase in efficiency of using alpha beta pruning is shown here. Note
that time taken and nodes counted are always proportional (as expected). Alpha beta
pruning increases the efficiency of the search algorithm by about a factor of ten. This
particular graph shows a depth limit of 6. Note that the tree is reduced in size as the
game progresses, this reflects the reduction in the branching factor shown in Figure 4.4.

While increasing the efficency of the count pieces() code was a valuable exercise,

it was even more valuable to reduce the number of times that count pieces() needed

to be called. This was accomplished using the method of “Alpha Beta Pruning” as

discussed in section 2.3. The results of pruning are quite dramatic and are shown in

Figure 4.3. The time taken to search a tree to a given depth using pruning is an order

of magnitude less than the time taken without pruning.

4.3 Branching Factor

The branching factor is an interesting statistic to observe during the game of play. As

pieces are removed from the board, the branching factor will initially increase because

CHAPTER 4. TESTING & PERFORMANCE 23

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90

B
ra

nc
hi

ng
 F

ac
to

r

Move Number

Variation of the branching factor over the course of a game

Player A Player B Average (5.25)

Figure 4.4: The branching factor varies greatly during the course of the game, it can
be as low as one when a particular move is forced, or sometimes more than 10 when
the board is very sparse, or when there is a lot of kings on the board. Note that the
definition of a win in draughts is when the other person cannot move, i.e. they have a
branching factor of 0. Also note the dramatic reduction of player A’s branching factor
towards the end of the game, this occurs both due to his loss of pieces and loss of control
of the playing board.

there are more squares for the remaining pieces to move to, however as more pieces

are removed, the small number of pieces remaining on the board will mean that the

branching factor reduces somewhat. It is interesting to compare the branching factors

of the winning and losing side of a match. In Figure 4.4 note that player B has a

branching factor of 1 quite a few times in the early game. These represent occasions

when player B had an opportunity to jump player A, and since jumps are forced the

branching factor was 1. The overall trend of player A’s branching factor is downwards,

while the branching factor for player B remains steady at about 8. The downward

trend for player A is representative of their loss of options and loss of control as time

progresses.

CHAPTER 4. TESTING & PERFORMANCE 24

4.4 Effect of Search Depth

The effect of search depth on the speed of play is highly significant. Figure 4.5 shows the

number of nodes that are examined for trees of depth 2, 4, 6, 8 and 10. The horizontal

lines represent the average values of the set of points for each depth. Any increase

in accuracy is paid for by an exponential increase in computation time. Thus the

search depth is usually set to 8, a value which represents a large look-ahead, but is not

prohibitively slow.

1

10

100

1000

10000

100000

1e+06

0 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 N

od
es

 (
lo

g
sc

al
e)

Move number

Depth: 2
Depth: 4
Depth: 6
Depth: 8

Depth: 10
17.9

216.6
2260.9

19086.2
157778.0

Figure 4.5: This is a comparison of the number of nodes in different depths of lookup
trees. Figures were recorded during the same game of draughts. Note that the increase in
the number of nodes is exponential, with an approximate fit of 33.7e

2.1x. The horizontal
lines represent averages for each set of points.

Chapter 5

Results

5.1 Evaluation Function Parameters

0

200

400

600

800

1000

10 20 30 40 50 60 70 80 90 100

W
ei

gh
tin

g
of

 p
ar

am
et

er

Generation number

PA
ADV
BAL
BR
MC
KC
TM
KT
FK

Figure 5.1: Evaluation Function Coefficients for Stage 1.

Sample output from a single-population run of the program is shown in Figures

5.1 - 5.4, which show the different parameters from Equation 2.1 split into stages, as

described previously. The first thing to note about these plots is that the figures reported

25

CHAPTER 5. RESULTS 26

0

200

400

600

800

1000

10 20 30 40 50 60 70 80 90 100

W
ei

gh
tin

g
of

 p
ar

am
et

er

Generation number

PA
ADV
BAL
BR
MC
KC
TM
KT
FK

Figure 5.2: Note the large transition at about generation 50 during stage two. This
indicates a transition from one maximum to another. The general confusion of this
graph indicates that stage two may benefit from being made smaller.

0

200

400

600

800

1000

10 20 30 40 50 60 70 80 90 100

W
ei

gh
tin

g
of

 p
ar

am
et

er

Generation number

PA
ADV
BAL
BR
MC
KC
TM
KT
FK

Figure 5.3: Evaluation Function Coefficients for Stage 3.

CHAPTER 5. RESULTS 27

0

200

400

600

800

1000

10 20 30 40 50 60 70 80 90 100

W
ei

gh
tin

g
of

 p
ar

am
et

er

Generation number

PA
ADV
BAL
BR
MC
KC
TM
KT
FK

Figure 5.4: Note that in the latter stages of the game, Free Kings become very important.
This is in keeping with common experience during the end-games of draughts, where
controlling the board with kings is a good strategy. Kings are so much more important
because they can guard four squares as opposed to men, which can only guard two
squares at most.

for each parameter are actually the average of that parameter over all members of the

population. These parameters can change quite quickly, if an element undergoes a

beneficial mutation, or have a slight bump if an element undergoes a non-beneficial

mutation.

Some of the parameters stabilise to what would be considered “intuitive” levels, while

others are more surprising. Note that Piece Advantage (PA) is not dominant in all but

stage 4. This is somewhat surprising as one would have thought that piece advantage

would be important in all stages of play. It may suggest, however that in the early stages

of play strategy is much more important than maintaining a strict numerical advantage.

In stages 3 and 4 things like King Centrality (KC) are very dominant, whereas in stages

1 and 2 Balance (BAL) and Piece Advancement (ADV) are much more important.

It is also instructive to see what is not important in each of the stages. Stages 3

and 4 put a very low emphasis on Balance (BAL), because during the latter stages of

CHAPTER 5. RESULTS 28

the game the board becomes more symmetrical as more and more pieces are converted

into kings. Similarly the importance of Free Kings (FK) in stage 1 is ranked very lowly,

simply because it is very difficult to have a piece promoted to king when there are still

20 or more pieces remaining on the board.

5.2 Genotypic Similarity

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90 100

G
en

ot
yp

ic
 S

im
ila

rit
y

Generation number

Genotypic Similarity

Figure 5.5: Genotypic Similarity is a measure of convergence of the individuals in a
population. It is the fraction of the populations elements that are the same as the ele-
ments of the fittest individual. We can see here that the Genotypic Similarity increases
rapidly during the first 20 generations, and increases gradually after that. The genotypic
similarity will never approach 1 due to the effects of mutation on the population.

Figure 5.6 shows the interaction between the genetic material of three islands. Note

the prominent drop to zero for nodes two and three just after 45 generations. This

type of feature occurs when the newly arrived genetic material is dramatically better

that the material that was on the node beforehand. This results in the newly arrived

individual instantly being ranked first in the round-robin tournament against the rest

of the subpopulation. The node can recover from this spike so quickly because when an

CHAPTER 5. RESULTS 29

individual is so dominant they get predominantly chosen for the crossover operations and

thus their genetic material is quickly distributed among the sub-population, resulting

in a high genotypic similarity.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

G
en

ot
yp

ic
 S

im
ila

rit
y

Generation Number

Node 1
Node 2
Node 3

Figure 5.6: This figure shows the interaction between processors for a three processor
system. A migration event was scheduled to take place every fifteen generations. Note
that the system eventually stabilises after a certain number of generations.

What appears to be happening in Figure 5.6 is that node 1 is the dominant node

with a better population. Shortly after several of the migrations, you can see a drop

in the genotypic similarity of nodes 2 and 3, which represents a change in their genetic

material. If we examine the raw data of the genetic material we see that there is some

evidence that the nodes are coming to equilibrium. For example, the total mobilities

(TM) for stage one were: 69, 84 and 93 for the three nodes, which are similar enough

for us to think that they are related. Likewise the balance figures (BAL) for stage four

were: 409, 428 and 419 respectively. Again it is clear that the genetic material of the

three nodes is converging, although at a very slow rate.

CHAPTER 5. RESULTS 30

5.3 Playability of Game

The playability of the final game, once we had used the genetic algorithm to determine a

good set of parameters, was the final test of the program. The resulting program is about

equal in ability to the authors’ draughts playing ability. The program was particularly

good at setting up its opponent for multiple jumps. It would usually sacrifice a piece

early in a set of moves, to force its opponent to make a certain set of moves that would

result in a double- or triple-jump for the computer. The number of games won by the

author and by the computer are about equal, although as noted below, if the computer

is forced into an end-game situation it can usually be beaten.

One area in which the program struggled was in the end-game. This is a known factor

in the world of computer checkers, and one of the reasons why end-game databases are so

common. The number of moves required to achieve a win when there are few pieces on

the board is very large. In some classic cases[1] such as the so-called “Second Position”,

where there are 3 pieces against 3 pieces, the winning side must play 40 accurate moves

to reach an easily winning position. Unfortunately this level of look-ahead is beyond

the power of the program and its playing ability suffered as a result.

Chapter 6

Conclusion

A draughts engine was constructed and was used as the fitness function for a genetic

algorithm. Several methods were employed to speed up the operation of the code. An

island model genetic algorithm was employed to decrease the likelihood of getting stuck

in local maxima and to increase the convergence of the genetic material to a stable state.

The final program was able to play draughts against a human opponent to a reasonable

level.

31

Bibliography

[1] AL Samuel: Some Studies in Machine Learning Using the Game of Checkers, Com-

puters and Thought, MIT Press, 1995. 2, 6, 30

[2] Jonathan Schaeffer et al : A World Championship Caliber Checkers Program, Ar-

tificial Intelligence, Vol 53, pp 273-290, 1992. 2, 6

[3] Jonathan Schaeffer et al : Reviving the Game of Checkers, 1991.

[4] KG Chisholm and PVG Bradbeer: Machine Learning Using a Genetic Algorithm

to Optimise a Draughts Program Board Evaluation Function. 2

[5] http://www.irishdraughts.org . 1, A-1

[6] http://www.triplejump.net .

[7] http://www.jimloy.com/checkers/checkers.htm .

[8] http://www.cs.ualberta.ca/~chinook/ . 2

32

http://www.irishdraughts.org
http://www.triplejump.net
http://www.jimloy.com/checkers/checkers.htm
http://www.cs.ualberta.ca/~chinook/

Appendix A

Official Rules of Draughts

These rules have been sourced from the North West Draughts Federation [5], which is

a federation of draughts clubs and individual players across the north west of Ireland.

1. The draughts board is square in shape and is divided into 64 squares of equal size,

alternately light and dark in colour (technically called green and buff).

2. The board is placed between the two players such that the bottom left-hand corner

square is green.

3. The game is played on the green squares, which for the purpose of reference are

assigned numbers from 1 to 32.

4. Each player starts with 12 discs, or “men”, all of equal size. One player has dark

coloured men (called red) and the other has light coloured men (called white)

5. At the commencement of play the red men occupy squares 1 to 12 and the white

men occupy squares 21 to 32.

6. To start the first game the players decide by the toss of a coin which colour they

will play. In subsequent games the players alternate colours.

7. The first move in each game is made by the player with the red men, thereafter

the moves are made by each player in turn.

A-1

APPENDIX A. OFFICIAL RULES OF DRAUGHTS A-2

8. There are fundamentally 4 types of move: the ordinary move of a man, the ordinary

move of a king, the capturing move of a man, and the capturing move of a king.

9. An ordinary move of a man is its transfer diagonally forward left or right from one

square to an immediately neighbouring vacant square.

10. When a man reaches the farthest row forward (the king-row or crown head) it

becomes a king, and this completes the turn of play. The man is “crowned” by

the opponent, who must place a man of the same colour on top of it before making

his own move. (It may be necessary to borrow from another set if no captured

man is available for the purpose).

11. An ordinary move of a king (crowned man) is from one square diagonally forward

or backward, left or right, to an immediately neighbouring vacant square.

12. A capturing move of a man is its transfer from one square over a diagonally

adjacent and forward square occupied by an opponent’s piece (man or king) and

on to a vacant square immediately beyond it. (A capturing move is called a

“jump”). On completion of the jump the capturing piece is removed from the

board.

13. A capturing move of a king is similar to that of a man, but may be in a forward

or backward direction.

14. If a jump creates an immediate further capturing opportunity, the capturing move

of the piece (man or king) is continued until all the moves are completed. The

only exception is that if a man reaches the king-row by means of a capturing move

it then becomes a king but may not make any further jumps in the same turn.

At the end of the capturing sequence, all captured pieces are removed from the

board, in the order in which they were jumped.

15. All capturing moves are compulsory, whether offered actively or passively. If there

are two or more ways to jump, a player may select any one he/she wishes, not

APPENDIX A. OFFICIAL RULES OF DRAUGHTS A-3

necessarily that which gains the most pieces. Once started, a multiple jump must

be carried through to completion.

16. Either player, on intimating his/her intention to his/her opponent, is entitled to

adjust his/her own or his/her opponent’s pieces on their squares at ant time during

the course of the game.

17. If a player on his/her turn to move touches a piece he/she must play the piece,

unless he/she has given an adjustment warning. If the piece is not legally playable,

rule 19.2 applies.

18. If any part of a playable piece is played over a corner of a square on which it is

stationed, the move must be completed in that direction.

19. A player making a false, improper or illegal move shall be cautioned for the first

offence, and the move recalled. He/she shall forfeit the game for any subsequent

false, improper or illegal move made in that game. This applies, for example, if a

player:

(a) Omits to capture or to complete a multiple capture (this supersedes the old

“huff” rule).

(b) On his/her turn to play touches an unplayable piece.

(c) Moves a piece, either in an ordinary move or in a capturing move, on to a

wrong square.

(d) Moves an uncrowned man backwards.

(e) When capturing, removes an opponent’s piece or pieces not in a position to

be captured in that move.

(f) When capturing, inadvertently removes one or more of his/her own pieces.

(g) Continues a capturing move through the king-row with a man not already

crowned.

(h) Moves a piece when it is not his/her turn to play.

APPENDIX A. OFFICIAL RULES OF DRAUGHTS A-4

20. If any of the pieces are accidentally displaced by the players or through any cause

outside their control, the pieces are replaced without penalty and the game is

continued.

21. A player who refuses to adhere to the rules shall immediately forfeit the game.

22. There are only two possible states to define: the win and the draw.

23. The game is won by the player who can make the last move, that is, no move is

available to the opponent on his/her turn to play, either because all his/her pieces

have been captured or his/her remaining pieces are all blocked.

24. A player also wins if his/her opponent:

(a) Resigns at any point.

(b) Forfeits the game by contravening the rules.

25. The game is drawn if at any stage both players agree on such a result. (This

usually occurs when neither player can force a win)

26. 40- Move Rule. The game shall be declared drawn if, at any stage of the game, a

player can demonstrate to the satisfaction of the referee that both of the following

conditions hold:

(a) Neither player has advanced an uncrowned man towards the king-row during

the previous 40 moves.

(b) No pieces have been removed from the board during the previous 40 moves.

Note: For the purpose of this rule, a move shall be said to consist of one red move

and one white move.

	Table of Contents
	List of Figures
	Introduction
	Theory
	Search Trees
	Minimax Search Strategy
	Alpha Beta Pruning
	Evaluation Function
	Iterative Deepening
	Search Extension
	Genetic Algorithm
	Island Model

	Algorithms and Code Design
	Structures
	Special optimisations
	Calculating Possible Moves
	Profiling code

	Parallelisation

	Testing & Performance
	Draughts Engine
	Efficiency
	Branching Factor
	Effect of Search Depth

	Results
	Evaluation Function Parameters
	Genotypic Similarity
	Playability of Game

	Conclusion
	References
	Official Rules of Draughts

